スーパーボンド根充シーラーの臨床操作

はじめに

読者諸氏は、一度ならず、**図1**に示すような症例に出会ったことがあると思われる。

比較的良好な根管充塡がなされ、側 枝までシーラーが進入した所見がある にもかかわらず、軽度の根尖病巣が慢 性的に残存している。

この原因には、患歯固有の根管形態 や技術的な側面など、多くの要素が考 えられるが、従来のシーラーに歯質接 着性がなかったことも一因であろう。

口腔内の苛酷な環境に耐え、根管充 塡当初の封鎖性を保ち続けるには、根 管象牙質に対して、安定した接着性を 持つ根充材が待ち望まれてきた。

このような要求をかなえる材料として、このたびサンメディカル社より 『スーパーボンド根充シーラー』が発売 された(図2、3)。

製品の概要については本号のトレンズ(38ページ)を参照されたいが、筆者は、試作品の段階から開発にかかわってきた経験を基にして、臨床応用の術式や注意事項について述べてみたい。

術式の概要

スーパーボンド根充シーラー(以下 SBシーラーと略す)は、スーパーボン ドC&Bの延長上に位置する製品であ る。

今回新規に追加されたのは、シーラー粉材と歯面処理材『アクセル』だけである。あとは従来のスーパーボンドと共通の製品を使用する。

以下、**図4**に示すような上顎第一小 臼歯を例にとって、筆者が日常的に行っている臨床術式を解説する。

CLINICAL

REPORT

図1 一見良好な根充に見えるが、軽度の根尖病巣ができている。接着性のないシーラーの限界かもしれない。

図2 今回新規に発売されたのは、この2点だけである。あとは従来のスーパーボンドと共通の製品を使用すればよい。

図3 根管壁の象牙質に、スーパーボンドC&B と同様の含浸層を作ることができる。"密着"ではなく、真の"接着"が得られるということである。

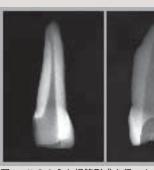


図4 このような根管形成を行った上顎第一小臼歯を例にとって、臨床術式を解説する。最近の歯内療法のパラダイムに従い、テーパーは大きめに形成してある。

1. 貼薬の除去と歯面処理

貼薬に使用した水酸化カルシウムは意外 に除去しにくい。水洗の後、NaCIOと機 械的振動を併用する。

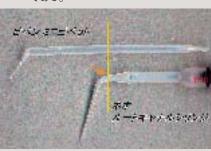
根管内にNaCIOを満たしておいて、マス ターファイルで軽くファイリングを行う のも有効である。

H2O2で発泡させる。しかし、この状態で は根管壁は酸化性雰囲気に傾いているの で、還元処理が必要である1)。

『アクセル』は優れた還元剤である。5~ 10秒の処理で、根管壁を還元性雰囲気に 戻すことができる。

表面処理材"グリーン"で5~10秒処理後、 5 よく水洗する。これで根管壁の処理は完 了である。

吸引、綿栓ブローチ等で水分を除去した 6 後、ペーパーポイントを挿入してSBシー ラーの適用にそなえる。


2. SBシーラーによる根管充塡

- SBシーラーのセットアップ。筆者はミキ シングステーションを常用している。硬 化時間の延長というよりも、モノマー液 の揮散を遅らせるのが主目的である。
 - ①粘度調整用モノマー液
 - ②粉材混和用モノマー液
 - ③スプレッダーに塗布するDライナー液
 - ④混和物移送用シリンジ
 - シリンジで移送するため、ダッペンディ ッシュは従来のものを使用している。

キャタリストを滴下して活性化したモノ マー液に、粉材を加えてよく混和する。左のモノマー液で、適宜粘度調整も可能 である。

↑ ネオ・ルートキャナルシリンジは、図の 矢印の部位で切断すると、ミニピペット をきつめに連結することができる。

根管口までは付属の筆で移送してもよい が、部位によって難しいこともあるので、筆者はこのようなシリンジを使用している。

シリンジの壁に付着した混和物は、空気 圧で押し出すことができないため、少し 多目に吸い上げておく。

CLINICAL REPORT

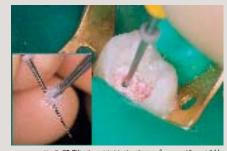
12 根管口付近にSBシーラー混和物を押し出す。この操作では、まだ根管内を満たすことはできない。

13 次にレンツロを使用して、混和物を根管内に送入する。根管口まで移送されていれば、レンツロは十分に機能する。

14 根管が満たされていくと、気泡が浮き上がってくる。これがうまく送入されたという目安になる(この写真は別途撮影)。

15 上からテーパー.02、.04、.06のメインポイント。SBシーラーには.04のものが使いやすい。

16 メインポイントの挿入。この段階では、スプレッダーに混和物が粘着するので、 側方圧接をすることはできない。


17 スプレッダーを使用しないで、アクセサリーポイントを挿入できるところまで押し込む。これを繰り返す。

18 アクセサリーポイントで充満された状態。 この種の扁平根でなければ、これほど挿 入されることはない。

19 ヒートカッターでポイントを切断する。 このときの熱で根管上部のシーラーが適 度に重合すると考えられる。

20 この段階で、はじめてスプレッダーが使用できるようになる。粘着防止のために、Dライナーの液を塗っておくとよい。

21 この頃になると、ダッペンディッシュの 混和物も少し粘度が上昇している。うま くアクセサリーポイントで採取できる。

22 気泡を巻きこまないように、ポンピング しながら挿入する。1根管あたり側方圧 接2回を目標としている。

23 共通根管だが、計4回の側方圧接を行った。これでSBシーラーによる根管充塡は完了である。

図5a~cに、術式の解説に使用した 上顎第一小臼歯の根充後の状態を示す。

X線写真では、ほぼ理想的に根充さ れている。切断標本を作ってみても、 欠膠部はないことが確認された。スー パーボンド系の材料は、比較的硬化時 の収縮が大きいものだが、十分に補償 されていると思われる。

また、本来はあってはならないこと だが、万一再根管治療が必要になった 時でも、これだけガッタパーチャポイ ントの占有部が大きければ、通常の溶 解材で簡単に除去できることが理解さ れるであろう。

臨床応用にあたっての注意点

SBシーラーはレジン系の根充シーラ ーであり、しかも液材にMMAを使用し ているため、独特の操作感がある。従 来のシーラーの操作法を踏襲するので はなく、材料の特性をよく理解して、 適切な術式を組み立てていく必要があ ると思われる。

その概要については、前項で解説し たが、まとめてみれば次のようになる。

1)『アクセル』は、必ず使用すること

酸化性雰囲気による重合阻害は、SB シーラーに限ったことではなく、すべ

てのラジカル重合機構をもつレジンに 共通の現象である。これを回避するた めには、次亜塩素酸ナトリウムを使わ ないという対策も考えられるが、根管 清掃には欠かせない薬剤であることも 確かである。

水酸化カルシウムを1週間以上貼薬し ておいた後、NaClOとH2O2で交互洗浄 を行ったとき、根管壁は最も効果的に 清掃されるという報告がある?。

この効果をふまえた上で、SBシーラ の接着性を十分に発揮させるために は、『アクセル』による5~10秒間の処 理が不可欠ということになる。

10%アスコルビン酸水溶液でもよい が、処理時間は少し長目になる。

2) モノマー液の揮散防止対策を とること

SBシーラーは、乾燥させなければ約 35分の操作余裕時間がある。

硬化が速いように見えるところは、 モノマー液が揮散 (蒸発) して、半乾 燥状態になったところである。

実際には操作時間は十分と考えられ るので、できるだけモノマー液が揮散 しにくいような対策を講じることで、 操作性は向上する。

ミキシングステーションは、本来は

硬化の速いスーパーボンドC&Bのため に開発されたものだが、低温ではモノ マー液の揮散も抑制されるため、SBシ ーラーの操作性の向上にも役立つこと が確認された。

また、ダッペンディッシュの左側の 凹みに用意した活性化液(43ページ**7**) を使って、乾燥してきたところに適宜 モノマー液を追加してやることも有効 である。

3) シリンジの活用、側方圧接の時期

いずれも、混和物の特性に合わせた 術式が必要ということである。前項で 述べた通りだが、使用している器具を 紹介しておきたい。

①混和物移送用シリンジ

- ・ルートキャナルシリンジ (ネオ製薬工業社製)
- ・ピペン ミニピペット

(DVT社製;入手方法はサンメディカ ル社に問い合わせされたい)

両者の径が合うところで切断して組 み合わせる (43ページ9、10)。

これにより、ミニピペットの側をデ ィスポーザブルとして使うことができ る。

②フィンガースプレッダー

・フレアーフィンガースプレッダー#20

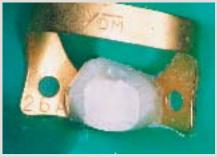


図5a 根管充塡が終了したところ。シーラ-に接着性があるので、コロナル・リーケージも起こりにくいと考えられる。そのため、仮 封材にはあまり気をつかわなくてもよい。

図5b X線写真では、まず問題はないように見 える。SBシーラーの造影性は、従来の多くの ーと同程度と思われる。臨床例でも、 両者の造影性の違いは感じられない。

図5c 切断標本を作ってみた。根管内の様相は、 通常のラテラル・コンデンセーションを行ったも のと大差なく、ポイントの隙間をSBシーラーが 緊密に埋めている。

CLINICAL REPORT

(マニー社製)

テーパーが大きいので、アクセサリ ーポイントが確実に挿入できる。

臨床例

図6~9に臨床例を示す。

図6、7は感染根管治療、図8、9は抜 髄の症例である。感染根管の根尖病巣 は消失し、抜髄根管にも問題点は見当

また、図9の症例の近心根はかなり彎 曲しているが、良好に根充されている のがわかる。

シーラーに接着性が付与されたこと の真価は、少なくとも5年以上経過しな いと評価できないと思われるが、短期 経過においては、従来のシーラーと比 較しても、全く遜色がないことが確認 された。

レジン系であることによる生体刺激 も、心配することはなさそうである。 重合開始剤がTBBであることも、有利 にはたらいているのだろう。

おわりに

根管充塡には、シーラーを使用する もの、使用しないものを含めて、多く の術式が紹介されているが、どの根充 材にも接着性がないことが難点であっ た。いかに優れたテクニックで根充を 行っても、年月の経過と共に漏洩が起 こってくるというリスクは否定できな

今回発売されたSBシーラーは、そ のような隘路を打開するものとして、 大いに期待される新材料である。筆者 の使用経験でも、これまでの臨床術式 に若干の改変を加えれば、特別な器械 を用いることもなく、きわめて良好な 結果が得られるということが確認され た。あとは長期経過を注意深く観察し ていく必要がある。接着性の真価は、 そのときに発揮されるはずだからであ

また、臨床術式の改良にも取り組ん でいきたいと考えている。現在のとこ ろ、もう少し所要時間の短縮を図れる のではないかという感触を得ている。

1) 片岡博樹ほか:4-META/MMA-TBBレジン の象牙質接着に及ぼす次亜塩素酸ナトリウムの 影響. 日歯保誌, 42(1): 241~247, 1999.

2) 荒木孝二:根管貼薬に水酸化カルシウムを 使う理由. 歯界展望別冊/Newエンドドンティ ックス, 医歯薬出版, 東京, 1999, 102~110.

図6a 34歳、女性、2];術前。歯槽膿瘍を併発していたので、切開と共に通常の感染根管治療を行 い、約5週間後にSBシーラーを使って根充した。

図6b 根充後2年5カ月;根尖部の拡大図。病巣 は消失し、再発の徴候は全くみとめられない。骨 梁構造もほぼ完全に回復してきた。

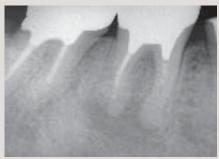


図7a 57歳、女性、61;術前。セメント質肥大が あり、特に近心根は根尖まで穿通するのは難しそ うである。可能なところまで根管拡大して、SB シーラーによる根充を行った。

図7b 根充後9カ月;根尖部の拡大図。病巣は 徐々に縮小に向かっている。アクセス可能な 部分だけでも、完全な接着封鎖ができたこと が、よい結果をもたらしたのだろう。

図8 64歳、男性、61;歯冠破折のため抜髄、 約2年後のX線写真。咬合力の大きい患者で、 負担過重による垂直性吸収がみとめられるが、 根尖の状態は正常である。

図9 72歳、男性、18;移植のための抜髄。近 心根はかなり彎曲しているが、うまく根尖ま で根充することができた。この歯は、現在同の 位置に移植されている。